The index was in an unfavorable situation in 2019 and 2020. Due to the fact that the pumps directly affect the performance of the injection system and in the case of improper operation, they cause injection in an inappropriate range or noninjection of the chemical, it is important to pay special attention to this part of the injection system. As can be seen from the index, a large amount of injection system repair activities are related to pumps. Therefore, since the performance of the pumps has a direct impact on the efficiency of the injection system, old pumps need to be upgraded or prevent them from malfunctioning by installing high-quality parts. Also, pumps should be prevented from failure by carrying out more rigorous preventive activities.

In order to monitor the corrosion rate, appropriate methods such as corrosion coupons and electrical resistance and linear polarization probes can be used. Using inappropriate methods can lead to incorrect results and subsequent wrong decisions. In the onshore field, the simultaneous use of corrosion coupons, probes, and measuring the amount of iron has caused the favorable situation of this indicator. However, the amount of corrosion monitoring indicators in the offshore field caused an unfavorable situation.

Conclusions
The most important KPIs for effective management of corrosion inhibitors and injection systems of upstream oil and gas industries were introduced at three levels. The KPIs defined for the two operational areas onshore and offshore in Iran were examined. Among the defined indicators for the onshore operational area and offshore field, 12 and 10 KPIs were implemented and calculated, respectively. In total, in both oil areas, the KPIs of Level 2 were in the desired condition, but the KPIs of Level 3 were in poor condition in most cases. By examining the KPIs, a relatively good view of the current state of corrosion inhibitors and injection systems in these fields was obtained. Also, by implementing and calculating other KPIs, a more favorable situation can be achieved in the management of corrosion inhibitors and injection systems and reduce the risk of corrosion.

Acknowledgment
The authors gratefully acknowledge management of research and technology of the National Iranian Oil Company (NIOC) for supporting the work.

References
4 A. Morshed, An Introduction to Asset Corrosion Management in the Oil and Gas Industry (Houston, TX: NACE, 2011).
JABER NESHATI is the chief executive of the Energy & Environment Research Center with the Research Institute of Petroleum Industry, Tehran, Iran. He has more than 20 years of experience in corrosion in the oil industry. He has conducted many projects in this field. His expertise is in corrosion and corrosion management.

SETAREH AMIRPOOR is with the Research Institute of Petroleum Industry, email: Setareh.amirpoor@yahoo.com. He has three years of work experience as a research assistant at Sharif University of Technology and the Research Institute of Petroleum Industry.

HABIB RAVANSHID is with the Research Institute of Petroleum Industry, email: engineer.hravanshid@gmail.com. He has four years of work experience at the University of Tehran, Research Institute of Petroleum Industry, and Pasargad Steel Complex.

MARYAM HOSSEINI ALIABADI is a senior researcher at the Research Institute of Petroleum Industry, email: hoseinima@ripi.ir. His specialty is electrochemistry, with experience studying various electrochemical processes in different fields, including corrosion inhibitors, fuel cells, and electrochemical wastewater treatment. He has a Ph.D. in electrochemistry.

NASER ESMAILI is an assistant professor at the Research Institute of Petroleum Industry, email: esmailin@ripi.ir. He works in the field of organic chemistry, with experience in synthesis, formulation, industrial production, and evaluation of corrosion inhibitors. He has a Ph.D. in organic chemistry.