<table>
<thead>
<tr>
<th>Rank</th>
<th>KPI</th>
<th>Inspection Period</th>
<th>Calculation Method</th>
<th>General Acceptance Criteria</th>
</tr>
</thead>
</table>
| 1 | Increase investment risk | Annual | \[
\frac{\text{Repair costs after event}}{\text{Preventive repairs}}
\] | The higher the ratio, the worse the system (improper performance of technical inspection, monitoring, and protection system). |
| 2 | Optimize repair costs | Annual | \[
\frac{\text{Total costs of injection system repairs}}{\text{Total costs of injection system}}
\] | Close to zero (by approaching one, it may actually be more economical to purchase a new injection system instead of paying for repairs). |
| 3 | Increase the security of investment profits | Annual | \[
\frac{\text{The total cost of downtime}}{\text{Direct costs of the protection system}}
\] | Close to zero (as it approaches zero, the investment security increases). |
| 4 | The efficiency of protection costs | Annual | \[
\frac{\text{The costs of occurred corrosion}}{\text{The costs of corrosion inhibitor and injection system}}
\] | The smaller the ratio, the better the system (it is better to compare this indicator with the previous year every year). |